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• What processes are in place to enhance and enable traceability and 
auditability? 

• How are pre-specification activities managed, and changes captured and 
monitored, to ensure the safe and effective use of AI/ML in drug development? 

(2) Quality, reliability, and representativeness of data 

AI/ML is particularly sensitive to the attributes or characteristics of the data used for 
training, testing, and validation. Although not unique to AI/ML, missing data, bias, and 
data drift are typically important considerations.  Ensuring data quality, reliability, and 
that the data are fit for use (i.e., relevant for the specific intended use and population) 
can be critical. Potential data-related issues to consider include: 

Bias: AI/ML can potentially amplify preexisting biases that exist in the underlying 
input data. NIST published a document characterizing three categories of bias 
(human, systemic, and statistical/computational) and “how they may occur in the 
commission, design, development, and deployment of AI technologies that can be 
used to generate predictions, recommendations, or decisions (e.g., algorithmic 
decision systems), and how AI systems may create societal harms.”37 

Integrity:  The completeness, consistency, and accuracy of data.38 

Privacy and security: The protection and privacy of data, linked to data 
classifications and the technical features of the system. 

Provenance:  Record trail that accounts for the origin of a piece of data (in a 
database, document, or repository) together with an explanation of how and why it 
got to the present place.39 Provenance describes “the metadata, or extra 
information about data, that can help answer questions such as who created the 
data and when.”40 

Relevance:  Adequate data are available and are appropriate for the intended use. 

Replicability:  Obtaining consistent results across studies aimed at answering the 
same question, each of which has obtained its own data.41 It is important to clarify 
data access early in the process. 

37 NIST Special Publication 1270, March 2022. https://doi.org/10.6028/NIST.SP.1270 
38 For additional considerations related to data integrity see the guidance for industry Data Integrity and 
Compliance with Drug CGMP (December 2018). https://www.fda.gov/media/119267/download 
39 Encyclopedia of Database Systems, definition of data provenance.  
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-39940-9_1305 
40 21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification 
Program (March 2019). https://www.federalregister.gov/documents/2019/03/04/2019-02224/21st-century-
cures-act-interoperability-information-blocking-and-the-onc-health-it-certification 
41 Ibid. 
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Reproducibility:  Obtaining consistent results using the same input data, 
computational steps, methods and code, and conditions of analysis42 (while not 
confirming validity, the transparency required to demonstrate reproducibility 
permits evaluation of the validity of design and operational decisions (S. V. Wang 
et al., 2017)). 

Representativeness: Confidence that a sample from which evidence is generated 
is sufficiently similar to the intended population. In the context of patient 
experience data, representativeness includes the extent to which the elicited 
experiences, perspectives, needs, and priorities of the sample are sufficiently 
similar to those of the intended patient population.43 

Questions: 

• What additional data considerations exist for AI/ML in the drug development 
process? 

• What practices are developers, manufacturers, and other stakeholders 
currently utilizing to help assure the integrity of AI/ML or to address issues, 
such as bias, missing data, and other data quality considerations, for the use of 
AI/ML in drug development? 

• What are some of the key practices utilized by stakeholders to help ensure 
data privacy and security? 

• What are some of the key practices utilized by stakeholders to help address 
issues of reproducibility and replicability? 

• What processes are developers using for bias identification and management? 

(3) Model development, performance, monitoring, and validation 

The use of the model may be important to consider in evaluating AI/ML model 
development and performance, including through practices of pre-specification steps 
and clear documentation of criteria for developing and assessing models.  It may also 
be important to consider the model risk and credibility; model risk drives the selection 
of credibility goals and activities.44 Model risk is determined by two factors, which are 

42 National Academies of Sciences, Engineering, and Medicine, 2019, Reproducibility and Replicability in 
Science. https://doi.org/10.17226/25303 
43 See discussion document for Patient-focused Drug Development Public Workshop Collecting 
Comprehensive and Representative Input, December 2017. 
https://www.fda.gov/media/109179/download 
44 Credibility refers to trust in the predictive capability of a computational model for a particular context of 
use (Kuemmel et al., 2020). This includes steps to document performance and approaches to measure 
uncertainty at the component level (e.g., model and non-level components, including metrics and 
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shaped by the context of use: model influence (the weight of the model in the totality 
of evidence for a specific decision) and decision consequence (the potential 
consequences of a wrong decision). 

In balancing performance and explainability, it may be important to consider the 
complexity of the AI/ML model. In situations where complex models (e.g., artificial 
neural network models) are determined to have similar performance, there may be 
overall advantages to selecting the more traditional and parsimonious (i.e., fewer 
parameters) model. 

It may also be important to monitor and document monitoring efforts of the AI/ML 
model to ensure it is reliable, relevant, and consistent over time. This includes 
documentation of the results of monitoring and any corrective action taken to ensure 
that the AI/ML produces intended results. Subsequent assessments (e.g., postmarket 
safety monitoring, surveillance) can provide valuable feedback on processes and real-
world model performance. Real-world model performance includes applications that 
may be supported by collection and monitoring of RWD (e.g., electronic health 
records, product and disease registries). Potential re-training based on real-world 
performance could provide important insights to model performance, and following 
such re-training, it may be important to monitor and document the AI/ML model to 
appropriately manage risks. 

Data considerations also include providing the details of the training dataset utilized to 
develop the AI/ML model, along with the performance, when employing independent, 
external testing data to support verification and validation (“external validity”).  It is 
generally important for data of sufficient quality for the particular context of use to be 
representative of the population where the AI/ML method will be utilized. It is 
important to help ensure AI/ML models are validated to produce results that are 
credible for the model’s use. Credibility activities include verification of the software 
code and calculations, validation of the model, and evaluation of the applicability of 
validation assessments to the context of use.  These activities include considerations 
of measuring the level of uncertainty of the model predictions.  Upon completion of 
credibility activities, an assessment can be made to determine whether the model is 
sufficiently credible for its use and whether the model may be acceptable for a given 
regulatory purpose. 

Questions: 

• What are some examples of current tools, processes, approaches, and best 
practices being used by stakeholders for: 

assessing performance and outcome of each component) and system level (e.g., methods for 
assessment, performance metrics, and outcomes), where feasible. Demonstration of credibility often 
includes a risk-based approach, where uses presenting the highest risk generally require the greatest 
standard of evidence, with a gradient of evidence needed based on the associated risk (i.e., informing 
early-stage drug development for non-serious medical condition versus evaluating drug safety and 
effectiveness for critical medical condition). 
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- Documenting the development and performance of AI/ML models that can 
be applied in the context of drug development (e.g., CONSORT-AI (Liu et 
al., 2020) and SPIRIT-AI (Cruz Rivera et al., 2020))? 

- Selecting model types and algorithms for a given context of use? 

- Determining when to use specific approaches for validating models and 
measuring performance in a given context of use (e.g., selecting relevant 
success criteria and performance measures)? 

- Evaluating transparency and explainability and increasing model 
transparency? 

- Addressing issues of accuracy and explainability (e.g., scenarios where 
models may provide increased accuracy, while having limitations in 
explainability)? 

- Selecting open-source AI software for AI/ML model development?  What 
are considerations when using open-source AI software? 

- The use of RWD performance in monitoring AI/ML?  

• What practices and documentation are being used to inform and record data 
source selection and inclusion or exclusion criteria? 

• In what context of use are stakeholders addressing explainability, and how 
have you balanced considerations of performance and explainability? 

• What approaches are being used to document the assessment of uncertainty 
in model predictions, and how is uncertainty being communicated?  What 
methods and standards should be developed to help support the assessment 
of uncertainty? 

699 
700 As outlined above, many of the overarching principles and standards related to the 
701 characteristics of trustworthy AI can help inform considerations or key practice areas for 
702 the application of AI/ML in the context of drug development.  In addition to meeting 
703 current requirements to support regulatory decision-making regarding a drug’s safety 
704 and effectiveness, the use of AI/ML in drug development raises challenges related to 
705 human-led AI/ML governance, accountability, and transparency; data considerations; 
706 and model development, performance, monitoring, and validation.  Transparency and 
707 documentation across the entire product life cycle can help build trust in the use of 
708 AI/ML. In this regard, it may be important to consider pre-specification and 
709 documentation of the purpose or question of interest, context of use, risk, and 
710 development of AI/ML. While not unique to the use of AI/ML in drug development, there 
711 are also a broad range of data quality, relevance, and reliability-related considerations. 
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712 Related to the area of model development, performance, monitoring, and validation, the 
713 V&V 40 risk-informed credibility assessment framework may be a helpful guide when 
714 considering the specific use for AI/ML.  In general, use of a risk-based approach may 
715 guide the level of evidence and record keeping needed for the verification and validation 
716 of AI/ML models for a specific context of use. Engagement with the FDA early in the 
717 process can also help inform and address these considerations. 
718 
719 IV. Next Steps: Engagement and Collaboration 
720 
721 The release of this initial discussion paper is part of a broader effort to communicate 
722 with a range of stakeholders and to explore the relevant considerations for the use of 
723 AI/ML in the development of human drugs and biological products.  Coupled with this 
724 document, FDA has included a series of questions for feedback, and a workshop with 
725 stakeholders is planned to provide an opportunity for further engagement. The FDA will 
726 also provide several other mechanisms to engage with stakeholders, sponsors, and 
727 developers on this topic, and these can be utilized to address questions before 
728 conducting a study that utilizes AI/ML. In addition to formal meetings where these 
729 methods can be discussed, the Critical Path Innovation Meetings (CPIM),45 ISTAND 
730 Pilot Program,46 Emerging Technology Program,47 and Real-World Evidence Program48 

731 meetings are examples of additional avenues for communicating and discussing a 
732 relevant AI/ML methodology or technology and improving efficiency and quality in drug 
733 development.  Additionally, communication and engagement with patients and the 
734 public regarding considerations for AI/ML in drug development is critical to ensure 
735 patient-centered approaches and policies. 
736 
737 Building on this discussion paper, FDA will continue to solicit feedback and engage a 
738 broad group of stakeholders to further discuss considerations for utilizing AI/ML 
739 throughout the drug development life cycle. These discussions and future 
740 collaborations with stakeholders may provide a foundation for a future framework or 
741 guidance. 

45 See CPIM, November 11, 2022. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-
entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim 
46 See the ISTAND Pilot Program, February 10, 2021. https://www.fda.gov/drugs/drug-development-tool-
ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-
program 
47 See Emerging Technology Program, February 22, 2022. https://www.fda.gov/about-fda/center-drug-
evaluation-and-research-cder/emerging-technology-program 
48 See Framework for FDA’s Real World Evidence Program, April 14, 2020. 
https:/fda.gov/media/120060/download 
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742 Glossary 
743 
744 Accuracy: The level of agreement between the measured value and the true value of 
745 the clinical event or characteristic. 
746 
747 Artificial Intelligence (AI): A branch of computer science, statistics, and engineering 
748 that uses algorithms or models to perform tasks and exhibit behaviors such as learning, 
749 making decisions, and making predictions.49 

750 
751 Biomarker: A defined characteristic that is measured as an indicator of normal 
752 biological processes, pathogenic processes, or biological responses to an exposure or 
753 intervention, including therapeutic interventions. Biomarkers may include molecular, 
754 histologic, radiographic, or physiologic characteristics. A biomarker is not a measure of 
755 how an individual feels, functions, or survives.50 

756 
757 Clinical Outcome Assessment (COA): A measure that describes or reflects how a 
758 patient feels, functions, or survives. There are four types of COAs: patient-reported 
759 outcome, observer-reported outcome, clinician-reported outcome, and performance 
760 outcome.51 

761 
762 Context of Use: A statement that fully and clearly describes the way AI/ML is to be 
763 used and the drug development-related purpose of the use.52 

764 
765 Controlled Terminology: A finite set of values (e.g., codes, text, numeric) that 
766 represent the only allowed values for a data item. Generally, controlled terminology 
767 standards specify the key concepts that are represented as definitions, preferred terms, 
768 synonyms, and code systems.53 

769 
770 Decentralized Clinical Trial: A clinical investigation where some or all of the trial-
771 related activities occur at a location separate from the investigator’s location.54 

772 
773 Digital Health Technology (DHT): A system that uses computing platforms, 
774 connectivity, software, and/or sensors for health care and related uses.  These 
775 technologies span a wide range of uses, from applications in general wellness to 
776 applications as a medical device.  They include technologies intended for use as a 

49 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
50 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016. 
https://www.ncbi.nlm.nih.gov/books/NBK338448 
51 See Clinical Outcome Assessment (COA), December 2020. https://www.fda.gov/about-fda/clinical-
outcome-assessment-coa-frequently-asked-questions 
52 CDISC Glossary, 2022. https://evs.nci.nih.gov/ftp1/CDISC/Glossary/CDISC%20Glossary.html 
53 Ibid. 
54 See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies 
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will 
represent FDA’s current thinking on this topic. https://www.fda.gov/media/155022/download 
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777 medical product, in a medical product, or as an adjunct to other medical products 
778 (devices, drugs, and biologics). They may also be used to develop or study medical 
779 products. Data captured by DHTs can often be transmitted directly to investigators, 
780 sponsors, and/or other authorized parties, with the capability to maintain blinding or 
781 masking when appropriate. The ability to transmit data remotely increases opportunities 
782 for patients to participate in clinical investigations at locations remote from the 
783 investigator’s site.55. 
784 
785 Digital Twins: An integrated multi-physics, multiscale, probabilistic simulation of a 
786 complex system that uses the best available data, sensors, and models to mirror the 
787 behavior of its corresponding twin. A fully developed digital twin consists of a physical 
788 component (e.g., unit operations), a virtual component, and automated data 
789 communications between the two. The development and application of digital twins are 
790 now being extended to manufacturing and complex products to assess sensitivities of 
791 material attributes and process parameters, reliability of control strategies, and 
792 effectiveness of mitigation plans for potential disturbances.56 

793 
794 Drug Development Tool (DDT): A biomarker, COA, or any other method, material, or 
795 measure determined to aid drug development and regulatory review. Animal models 
796 developed to be used for product development under the Animal Rule57 have been 
797 determined by FDA to be DDTs under section 507 of the FD&C Act.58 

798 
799 Endpoint: A precisely defined variable intended to reflect an outcome of interest that is 
800 statistically analyzed to address a particular research question. A precise definition of 
801 an endpoint typically specifies the type of assessments made, the timing of those 
802 assessments, the assessment tools used, and possibly other details, as applicable, 
803 such as how multiple assessments within an individual are to be combined.59 

804 
805 Machine Learning (ML): A subset of AI that allows ML models to be developed by ML 
806 training algorithms through analysis of data, without being explicitly programmed.60 

807 
808 Natural Language Processing (NLP): The branch of computer science, specifically 
809 the branch of AI, concerned with giving computers the ability to understand text and 
810 spoken words in much the same way human beings can.61 

55 Ibid. 
56 See Modeling & Simulation at FDA, November 16, 2022. https://www.fda.gov/science-research/about-
science-research-fda/modeling-simulation-fda 
57 See Animal Rule Approvals, June 2022. https://www.fda.gov/drugs/nda-and-bla-approvals/animal-rule-
approvals 
58 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools 
(November 2020). https://www.fda.gov/media/133511/download 
59 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016. 
https://www.ncbi.nlm.nih.gov/books/NBK338448 
60 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
61 “What is natural language processing?” Accessed September 8, 2022. 
https://www.ibm.com/cloud/learn/natural-language-processing#toc-what-is-na-jLju4DjE 
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811 
812 Neural Network: A commonly used form of AI/ML that is used for categorization 
813 applications and has been loosely likened to the way that neurons in the brain process 
814 signals. Neural networks typically consist of at least three layers of neurons: input layer 
815 (which receives information), hidden layer (responsible for extracting patterns and 
816 conducting the internal processing), and output layer (produces and presents the final 
817 network output).62 

818 
819 Real-World Data (RWD): The data relating to patient health status and/or the delivery 
820 of health care routinely collected from a variety of sources. Examples of RWD include 
821 data derived from electronic health records (EHRs); medical claims and billing data; 
822 data from product and disease registries; patient-generated data, including from in-
823 home-use settings; and data gathered from other sources that can inform on health 
824 status, such as mobile devices.63 

825 
826 Real-World Evidence (RWE): The clinical evidence about the usage and potential 
827 benefits or risks of a medical product derived from analysis of RWD.  RWD sources 
828 (e.g., registries, collections of EHRs, administrative and medical claims databases) can 
829 be used for data collection and, in certain cases, to develop analysis infrastructure to 
830 support many types of study designs to develop RWE, including, but not limited to, 
831 randomized trials (e.g., large simple trials, pragmatic clinical trials) and observational 
832 studies (prospective or retrospective).64 

833 
834 Recurrent Neural Network: A type of artificial neural network that uses sequential 
835 data or time series data to exhibit temporal dynamic behavior. These algorithms are 
836 commonly used for ordinal or temporal problems, such as language translation, NLP, 
837 speech recognition, and image captioning.65 

62 See the Executive Summary for the Patient Engagement Advisory Committee Meeting: Artificial 
Intelligence and Machine Learning in Medical Devices, October 22, 2020. 
https://www.fda.gov/media/142998/download 
63 See the draft guidance for industry, investigators, and other stakeholders Real-World Data: Assessing 
Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and 
Biological Products (September 2021). https://www.fda.gov/media/152503/download 
64 Ibid. 
65 Adapted from https://www.ibm.com/cloud/learn/recurrent-neural-networks 
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